博碩士論文 etd-0729111-142430 詳細資訊


姓名 洪錦桂 (JIN-GUEI HUNG) 電子信箱 m9807309@mail.ntust.edu.tw
學號 m9807309 論文著作權 作者與指導教授共同擁有
系所名稱(中) 電機工程系 系所名稱(英) Department of Electrical Engineering
學年度 / 學期 99學年度第2學期 學位 碩士 (Master)
論文名稱(中) 以步態週期為基礎之雙足機器人步行控制
論文名稱(英) Gait Cycle Based Locomotion Control with a Biped Robot
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內 5 年後公開、校外永不公開
論文種類 碩士論文
論文語文別 / 頁數 中文 / 81
統計 已被瀏覽 84 次,被下載 0 次
關鍵字(中)
  • 步態週期運動控制
  • 腳底壓力中心點
  • 雙足機器人運動控制
  • 關鍵字(英)
  • gait cycle based locomotion
  • center of pressure (COP)
  • biped locomotion
  • 摘要(中) 本文提出以一步態週期為基礎之雙足機器人運動控制系統。此一控制系統包含兩個腳底壓力量測單元與一運動控制器。其中,腳底壓力量測單元是用來量測兩個腳底壓力中心點(Center Of Pressure;COP);運動控制器則用來收集COP之資訊,以達成穩定行走之目的。為了降低計算複雜度,本文採用以步態週期為基礎之COP回饋方法;其透過調整運動控制參數,使雙足機器人可以自動地從靜止到穩定行走,且不需要考慮機器人之動態特性。因此,此一機器人可以適應於不同軀體結構,也不需得知桿件與馬達之重量配置。最後,本文以兩種不同實驗來評估此一運動控制器之效能,分別包括:機器人自動地由靜止到穩定步行以及行走過程中改變機器人重量配置。實驗結果也驗證了此一方法之可行性。
    摘要(英) This study proposes a gait cycle based locomotion control system for biped robots. The proposed control system is configured with a pair of foot-pad pressure units and a locomotion controller. The foot-pad pressure units are developed to measure the centers of pressure (COP) of two foot-pads. The locomotion controller is implemented to collect the COP information for achieving stable walking. In order to reduce the computational loads, a gait cycle based COP feedback approach is proposed, and the biped humanoid robot may automatically move from stationary to stable walking without considering the robot’s dynamics by adjusting the locomotion control parameters. Therefore, the robot is capable of adapting to different biped body structures without the knowledge of mass distributions of the links and motors. Finally, two experiments are used to evaluate the performance of the proposed approach, including automatically walking from stationary and walking with changing mass distribution on the robot body. The experimental results verified the feasibility of the proposed approach.
    論文目次 摘 要 i
    Abstract ii
    致謝 iii
    目錄 iv
    圖目錄 vi
    表目錄 ix
    第一章 緒論 1
    1-1 研究背景、動機與目的 1
    1-2 論文架構 3
    第二章 文獻回顧 4
    2-1 運動步態規劃 4
    2-2 平衡感測器系統 6
    2-3 IMU平衡運動控制 8
    2-4 ZMP平衡運動控制 10
    2-5 文獻總結 14
    第三章 以步態為基礎之控制方法 15
    3-1 設計概念與優點 15
    3-2 系統架構 16
    3-3 腳底壓力中心軌跡之面積中心點 19
    3-4 比例式步態控制器 20
    第四章雙足機器人之案例研究 22
    4-1 雙足機器人之整體架構 22
    4-1-1 機構實現 22
    4-1-2 步態控制器 26
    4-1-3 壓力感測器單元 28
    4-1-4 壓力感測器校正實驗 32
    4-2 步態軌跡規劃 35
    4-2-1 擺動腳底軌跡規劃 36
    4-2-2 髖部軌跡規劃 36
    4-2-3 軌跡模擬結果 37
    4-3 雙足機器人運動學 40
    4-3-1 D-H表示法 41
    4-3-2 正向運動學矩陣方程式 44
    4-3-3 雙足機器人之逆向運動學 47
    4-4 零力矩點與壓力中心點 51
    第五章實驗結果與討論 54
    5-1 靜止到穩定步行 54
    5-2 不對稱重量配置 60
    第六章結論與未來研究方向 65
    6-1 結論 65
    6-2 未來研究方向 65
    參考文獻 66
    參考文獻 [1] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 977-984, 2005.
    [2] Q. Huang and K. Yokoi, “Planning walking patterns for a biped robot,” IEEE Transaction on Robotics and Automation, vol. 17, pp. 280-289, 2001.
    [3] T. Hemker, M. Stelzer, O.V. Stryk and H. Sakamoto, “Efficient walking speed optimization of a humanoid robot,” International Journal Robotic Research, pp. 303-314, 2009.
    [4] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, “Humanoid robot HRP-2,” IEEE International Conference on Robotics and Automation, pp.1083-1090, 2004.
    [5] N. Kaewlek and T. Maneewarn, “Inclined plane walking compensation for a humanoid robot,” International Conference on Control, Automation and Systems, pp. 1403-1407, 2010.
    [6] Q. Li, A. Takanishi, and I. Kato, “Learning control compensative trunk motion for a biped walking robot based on ZMP stability criterion,” IEEE/RSJ International Conference on Intelligent Robots and System, pp. 597-603, 1992.
    [7] S. Lohmeier, K. Loeffler, M. Gienger, H. Ulbrich, and F. Pfeiffer, “Sensor system and trajectory control of a biped robot,” Proc. IEEE International Conference on Robotics and Automation, pp. 3758-3763, 2005.
    [8] B. Niku, Introduction to Robotics Analysis ,Systems, Application, Prentice Hall, 2001.
    [9] I.W. Park, J.Y. Kim and J.H. Oh, “Online biped walking pattern generation for humanoid robot KHR-3 (KAIST Humanoid Robot-3: HUBO),” Proc. of the IEEE International Conference on Robotics and Automation, pp. 398-403, 2006.
    [10] I.W. Park, “Development of humanoid robot platform KHR-2(KAIST Humanoid Robot-2),” IEEE International Conference on Humanoid Robotics, vol. 1, 292-310, 2004.
    [11] V. Prahlad, G. Dip and M.H. Chia, “Disturbance rejection by online ZMP compensation,” Robotica, vol. 26, pp. 9-17, 2008.
    [12] Z. Peng, Q. Huang, L. Zhang, A. R. Jafri, W. Zhang and K. Li, “Humanoid on-line pattern generation based on parameters of off-line typical walk patterns,” Proc. IEEE International Conference on Robotics and Automation, pp. 3758-3763, 2005.
    [13] C. Shih and Y. Zhu, “Optimization of the biped robot trajectory,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 899-903, 1991.
    [14] D. Scholz, M. Friedmann, and O.V. Stryk, “Fast, robust and versatile humanoid robot locomotion with minimal sensor input,” Workshop on Humanoid Soccer Robots, pp. 28-45, 2009.
    [15] M. Vukobratovic and O. Timcenko, “Contributions of the synthesis of biped gait,” IEEE Transaction Biomedical Engineering, pp. 1-6, 1969.
    [16] M. Vukobratovic, “Zero-moment-point thirty five years of its life,” IEEE International Journal of Humanoid Robotics, pp. 157-173, 2004.
    [17] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita and H. Kirukawa, “A honda humanoid robot controlled by aist software,” Proc. of the IEEE-RAS International Conference on Humanoid Robot, pp. 259-264, 2001.
    [18] J. Yamaguchi, A. Takanishi, and I. Kato, “Development of a biped walking robot compensating for three-axis moment by trunk Motion,” Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 561-566, 1993.
    [19] C. Zhu, A. Kawamura, “Walking principle analysis for biped robot with ZMP concept friction constraint and inverted pendulum model,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.364-369, 2003.
    [20] 伍寒楨,「考慮動態平衡的人形機器人跨越障礙物之研究」,淡江大學碩士論文,民國九十九年。
    [21] 邱國維,「創新式雙足人形機器人行走平台設計」,長庚大學碩士論文,民國九十八年。
    [22] 林煜程,「雙足機器人之動態步行分析與控制」,國立中興大學碩士論文,民國九十八年。
    [23] 俞舒文,「人型機器人步態分析及控制」,國立台灣大學機械工程學系研究所,碩士論文,民國九十六年。
    [24] 高炳中,「雙足機器人之步行規劃與平衡控制」,國立台灣科技大學碩士論文,民國九十七年。
    [25] 涂志芳,「人形機器人分散式即時控制及步行分析」,國立台灣科技大學碩士論文,民國九十六年。
    [26] 許煥坤,「雙足機器人之步態補償控制設計」,國立交通大學碩士論文,民國九十七年。
    [27] 陳建升,「人形機器人步態偵測及穩定控制系統之研究」,南台科技大學碩士論文,民國九十九年。
    [28] 黃俊豪,「以SoPC為基礎之機械手臂控制開發」,國立台灣科技大學碩士論文,民國九十九年。
    [29] 楊欣平,「十二自由度雙足步行機器人之解析動力學模式與控制設計」, 國立中興大學機械工程學系碩士論文,民國九十六年。
    [30] URL http://www.tekscan.com/pdfs/DatasheetA201.pdf
    [31] URL http://www.robotis.com/xe/bioloid_en
    [32] URL http://www.microchip.com
    [33] URL http://www.npf.org.tw/post/2/4428
    [34] Honda ASIMO Information, http://www.world.honda.com/ASIMO/
    [35] Wabian Information, http://www.humanoid.waseda.ac.jp/index.html
    指導教授/口試委員
  • 郭重顯 - 指導教授
  • 鄭慕德 - 委員
  • 林其禹 - 委員
  • 蘇順豐 - 委員
  • 繳交日期 2011-07-29


    基本檢索 | 進階查詢 | 瀏覽檢索 | 檢索歷史 | 主頁

    如有任何問題請與國立臺灣科技大學圖書館聯繫