博碩士論文 etd-0729111-142856 詳細資訊


姓名 許耀升 (SYU, YAO-SHENG) 電子信箱 不公開
學號 m9807508 論文著作權 作者與指導教授共同擁有
系所名稱(中) 電機工程系 系所名稱(英) Department of Electrical Engineering
學年度 / 學期 99學年度第2學期 學位 碩士 (Master)
論文名稱(中) 具反應導航之嵌入式輪椅控制系統
論文名稱(英) Embedded Wheelchair Control System wit Reactive Navigations
檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 校內 5 年後公開、校外永不公開
論文種類 碩士論文
論文語文別 / 頁數 中文 / 62
統計 已被瀏覽 92 次,被下載 0 次
關鍵字(中)
  • 人機介面
  • 智慧型輪椅
  • 反應導航
  • 互動式介面
  • 嵌入式系統
  • 關鍵字(英)
  • human-machine interactions
  • intelligent wheelchairs
  • reactive navigations
  • interactive interface
  • embedded systems
  • 摘要(中) 本文提出一以使用者為中心之觸控式介面智慧型輪椅,其以XScale PXA270嵌入式平台與嵌入式Linux作業系統來開發輪椅控制系統。此一輪椅觸控操控介面為一個觸控面板,其除了提供類似傳統電動輪椅搖桿之操控方式之外,亦能即時顯示輪椅的狀態。此外,此一控制系統也結合障礙物資訊以及反應導航演算法開發輪椅避障導航技術。輪椅前方障礙物以雷射測距儀加以偵測,並以人工位能場法(Artificial Potential Field;APF)開發反應導航演算法。特別的是,為了提高輪椅之即時控制性,並減輕圖形使用者介面在使用者空間(User Space)之運算負擔,障礙物資訊之收集以及APF演算法皆以裝置驅動程式實現於嵌入式作業系統之核心空間內(Kernel Space)。因此,此一嵌入式輪椅觸控操控介面可提高電動輪椅操控之便利性、控制即時性、穩定性與安全性。此外,輪椅控制相關裝置驅動程式以及圖形化使用者介面皆以開放原始碼來開發,以易於後續之系統整合。最後,本文實作一觸控輪椅雛形,以進行裝置驅動程式之功能驗證,並進行反應導航系統之效能評估。
    摘要(英) This study proposes a touch interface for controlling a human-centered intelligent wheelchair. The proposed solution is developed based on the XScale embedded platform and a real-time embedded Linux operation system.The touch interface is a touch panel which performs similar joystick manipulations while it provides convenient wheelchair control interface, as well as offers useful wheelchair status. In addition, reactive navigation techniques are also developed by combining with the obstacle information to perform collision free navigations. The obstacle detection sensor uses a laser range finder and the reactive navigation uses the artificial potential field approach. Especially, collections of obstacle information and realizations of APF navigations are both implemented as device drivers in the kernel space to improve real time performance, as well as to reduce computational loads of graphical user interface in the user space. Consequently, the proposed embedded touch wheelchair control architecture has the advantages of real-time performance, simple architecture, high reliability and safety. The device drivers and GUI are all developed as open source codes, and they are easy for integrations. Finally, a touch wheelchair prototype is produced in our laboratory for functional validations of device drivers and performance evaluations of reactive navigations.
    論文目次 摘要 I
    Abstract II
    目錄 III
    圖目錄 V
    表目錄 IX
    第一章 緒論 1
    1-1 研究背景與動機 1
    1-2 研究目的 2
    1-3 論文架構 3
    第二章 文獻回顧 4
    2-1 輪椅人機操控介面相關研究 4
    2-2 反應導航相關研究 7
    2-3 嵌入式系統相關研究 11
    第三章 研究方法 15
    3-1 觸控式輪椅操控介面(wTouch)15
    3-2 輪椅控制架構 22
    3-2-1 系統架構規劃 22
    3-2-2 wTouch運動指令生成 25
    3-3 人工位能場之反應導航 27
    3-2-1 反應導航架構 28
    3-2-2 人工位能場 30
    第四章 系統開發 33
    4-1 系統架構與硬體組成 33
    4-2 使用者介面程式開發 36
    4-2-1 移植MiniGUI 36
    4-2-2 開發環境與介面程式建立 38
    4-3 反應導航驅動程式 40
    4-3-1 驅動程式模組建構 40
    4-3-2 雷射測距儀控制 43
    4-3-3 非同步傳輸介面開發 44
    4-3-4 馬達速度控制 47
    第五章 實驗結果分析與討論 49
    5-1 反應導航輪椅之雛形 49
    5-2 驅動程式介面驗證 50
    5-3 走廊避障實驗 52
    5-3-1 實驗前置作業與環境設定 52
    5-3-2 人機介面軌跡評估實驗 54
    5-3-3 反應導航軌跡評估實驗 56
    第六章 結論 59
    參考文獻 60
    參考文獻 [1]E. Abbott and D. Powell, “Land-vehicle navigation using GPS,” Proceedings of the IEEE, vol. 87, no. 1, pp. 145 – 162, 1999
    [2]A.Z. Alkar and M.A. Karaca, “An internet-based interactive embedded data-acquisition system for real-time applications,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 3, pp. 522 – 529, 2009.
    [3]M. Butler, “Android: changing the mobile landscape,” IEEE Pervasive Computing, vol. 10, no. 1, pp. 4 – 7, 2011.
    [4]J.U. Chu, I.H. Moon, G.W. Choi, J.C. Ryu, and M.S. Mun, “Design of BLDC motor controller for electric power wheelchair,” IEEE International Conference on Mechatronics, pp. 92 – 97, 2004.
    [5]R.A. Cooper, D.K. Jones, S. Fitzgerald, M.L. Boninger, and S.J. Albright, “Analysis of position and isometric joysticks for powered wheelchair driving,” IEEE Transactions on Biomedical Engineering, Vol. 47, No. 7, pp. 902 – 910, 2000.
    [6]B.E. Dicianno, R.A. Cooper, and J. Coltellaro, “Joystick control for powered mobility: current state of technology and future directions,” Physical Medicine and Rehabilitation Clinics of North America, Vol. 21, No. 1, pp. 79 – 86, 2010.
    [7]S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Trans. Robotics and Automation, vol.16, no.5, pp. 615-620, Oct. 2000.
    [8]H.C. Huang and C.C. Tsai, “FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1604 – 1616, 2009.
    [9]I. Iturrate, J.M. Antelis, A. Kubler, J.A. Minguez, “Noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation”, IEEE Transactions on Robotics, vol. 25, no. 3, pp. 614 – 627, 2009.
    [10]H. Kitagawa, T. Miyoshi, and K. Terashima, “Skill-assist control of omnidirectional wheelchair using human-friendly interface,” IEEE International Conference on Robotics and Biomimetics, pp. 1002 – 1007, 2008.
    [11]Y.Kuno, N. Shimada, and Y. Shirai, “Look where you are going,” IEEE Robot. Autom. Mag., vol. 10, no. 1, pp. 21–34, Mar. 2003.
    [12]O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal on Robotics Research, vol. 5, no. 1, pp. 90 – 98, 1986.
    [13]S. Katsura and K. Ohnishi, “Semiautonomous wheelchair based on quarry of environmental information,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1373 – 1382, 2006.
    [14]K.H. Lin, H.S. Lee and W.T. Chen, “Implementation of obstacle avoidance and zigBee control functions for omni directional mobile robot,” IEEE Workshop on Advanced robotics and Its Social Impacts, pp. 1-5, 2008.
    [15]M. Macedonia, “iPhones target the Tech elite,” Computer, no. 40, no. 6, pp. 94 – 95, 2007.
    [16]H. Mitsui, H. Kambe, and H. Koizumi, “Use of student experiments for teaching embedded software development including HW/SW co-design,” IEEE Transactions on Education, vol. 52, no. 3, pp. 436 – 443, 2009.
    [17]L Montesano, M Diaz, S Bhaskar, J Minguez, “Towards an intelligent wheelchair system for users with cerebral palsy,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18,no. 2, pp.193-202, 2010.
    [18]M. Mazo, “An Integral System for Assisted Mobility,” IEEE Robot. Automat. Mag. 8(1), pp. 46-56, 2001
    [19]A. Mihailidis, P. Elinas, J. Boger, and J. Hoey, “An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 136 – 143, 2007.
    [20]M.N. Mahyuddin, C.Z. Wei and M.R. Arshad, “Neuro-fuzzy algorithm Implemented in altera's fpga for Mobile robot's obstacle avoidance mission,” IEEE Conference on TENCON, pp. 1-6, 2009.
    [21]Z. Su, B. Zeng, G. Liu, F. Ye and M. Xu, “Application of fuzzy neural network in parameter optimization of Mobile robot path planning using potential field,” IEEE International Symposium on Industrial Electronics, pp. 2125-2128, 2007.
    [22]C.C. Tsai, H.C. Huang, and S.C. Lin, “FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment,” IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 1016 – 1026, 2011.
    [23]D. Voth, “Evolutions in gaming,” IEEE Pervasive Computing, vol. 6, no. 2, pp. 7 – 10, 2007.
    [24]P. Veelaert, and W. Bogaerts, “Ultrasonic potential field sensor for Obstacle Avoidance”, IEEE Trans. Robotics and Automation, vol. 15, no. 4, pp. 774 – 779, Aug. 1999.
    [25]D.F. Wolf, J.A. Holanda, V. Bonato, R. Peron and E. Marques, “An FPGA-Based mobile robot controller,” IEEE Southern Conference on Programmable Logic, pp. 119-124, 2007.
    [26]C.T. Yang, Y.Y. Chu, and S.C. Tsaur, “Implementation of a medical information service on Android mobile devices,” International Conference on New Trends in Information Science and Service Science, pp. 72 – 77, 2010.
    [27]Q. Zhu, Y. Yan and Z. Xing, “Robot path planning based on artificial potential field approach with simulated annealing,” International Conference on Intelligent Systems Design and Applications, vol. 2, pp. 622-627, 2006.
    [28]Intel® PXA27x Processor Family Developer’s Manual
    [29]MiniGUI,http://www.minigui.org/
    [30]AVR. Training course. Data transmission via UART,http://easyelectronics.ru/avr-uchebnyj-kurs-peredacha-dannyx-ch erez-uart.html
    [31]張書豪,「具自主導航與避障之嵌入式移動機器人控制系統開發」,碩士論文,國立台灣科技大學電機工程研究所,民國99年。
    [32]許書彰,「實現自走車運動路徑規劃於ARM-based系統發展平台」,碩士論文,國立成功大學電機工程研究所,民國94年。
    [33]蕭嘉文,「具感測融合之智慧型操控輔助電動輪椅開發」,碩士論文,長庚大學醫療機電工程研究所,民國97年。
    [34]康揚輔具產品介紹,http://www.karma.com.tw/
    [35]飆機器人網站,http://www.playrobot.com/home_index.htm
    [36]雷射測距儀介紹,http://www.hokuyo-aut.jp/02sensor/07scanner/ downlo ad / index.html
    指導教授/口試委員
  • 郭重顯 - 指導教授
  • 蘇順豐 - 委員
  • 林其禹 - 委員
  • 鄭慕德 - 委員
  • 繳交日期 2011-07-29


    基本檢索 | 進階查詢 | 瀏覽檢索 | 檢索歷史 | 主頁

    如有任何問題請與國立臺灣科技大學圖書館聯繫