Title page for etd-0727112-110451


URN etd-0727112-110451
Author Yuan-Chin Yu (游源晉)
Author's Email Address No Public.
Statistics This thesis had been viewed 85 times. Download 0 times.
Department Department of Electronic Engineering
Year 2011
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Design and Fabrication of Integrated Electroabsorption Modulated Laser
Title (Chinese) 電致吸收調變雷射之積體化元件設計與製作
Date of Defense 2012-07-23
Page Count 103
Keyword
  • EA Modulator
  • DFB Laser
  • Dual Quantum well
  • Integrated Devices
  • Keyword (Chinese)
  • 電致吸收調變器
  • 分佈反饋式雷射
  • 雙量子井
  • 積體化元件
  • Abstract Monolithically photonic integration to realize electro-absorption modulated laser (EML) has the advantages of small device area, low cost, low insertion loss, low driving voltage, polarization insensitivity, and high modulation bandwidth, thus is promising for high-speed and long-distance optical communication system. The thesis focuses on the monolithically integration of distributed feedback (DFB) laser and electro-absorption modulator (EAM) on single chip using dual multi-quantum well platform. The dual multi-quantum wells are designed to have different material strains and energy bandgaps for optical gain and optical modulation region, respectively. For device optimization, the multi-quantum well structures are designed using PICS3D software while the optical confinement characteristic in the laser structure is analyzed using FIMMWAVE software. Material absorption coefficient of quantum well set for optical modulation is calculated with Matlab program. The simulation reveals that the optical confinement factor for optical gain and modulation regions are 0.0626 and 0.1855, respectively, while the internal coupling efficiency between two regions is about 88%. The results are then used to calculate the optical extinction ratio and insertion loss of the EAM with different device lengths. Following the aforementioned procedure, we are able to optimize the entire chip parameters in order to achieve an EML capable of providing an optical extinction ratio of >10 dB and a modulation bandwidth of > 10 GHz.
    For experimental demonstration, we have successfully fabricated monolithically integrated EML with our optimized dual multi-quantum well configuration. The integrated DFB laser has a threshold current of around 78 mA, a lasing wavelength of 1610 nm, a side-mode suppression ratio of > 50 dB, an electrical contact resistance of 7.3 ohm, and a optical output power of 3 mW. The integrated EAM is biased at around -2 V to allow maximum optical absorption at the wavelengths of around 1.58~1.62 慆 and an optical extinction ratio of 18 dB.
    Abstract (Chinese) 本論文主要之研究為雙量子井結構的積體化技術,所積體化之元件為分佈反饋式(DFB) 雷射與電致吸收調變器(EAM),由於將此兩元件進行積體化的優點在於兩者均為光通訊系統中具備重要功能的特性元件,如進行積體化後,其優點在於該積體化元件具有極小的元件體積,由於雙元件共用同一波導進行訊號傳輸,因此有效地降低原本離散元件之光傳輸損耗,亦能達到高速調變、高傳輸容量、低驅動電壓、極化不敏感等優勢因此也適合運用於高速度、高頻寬及長距離的通訊系統中。就製作成本而言,積體化元件可以大大降低其製作成本與製程時間,以上的優勢讓電致吸收調變雷射在未來光通訊產業將佔有重要的地位。
    本論文利用雙量子井結構的目的在於利用兩組不同的量子井分別提供雷射光增益區與調變器光吸收區之功能,在量子井材料結構選擇方面,本論文的雙量子井結構分別利用不同之壓縮應力的磷砷化銦鎵(InGaAsP)材料於雷射光增益區與EAM光吸收區中,分別提供電光增益輸出與電致吸收調變的材料能隙。材料結構的分析是指用既有之套裝軟體分別分析雷射結構特性與光場侷限的特性,再搭配程式分析調變器的材料吸收係數。計算出本論文所製作之實際元件中雷射增益區與調變器之量子井波導的光侷限因子分別為0.0626與0.1855,而內部耦合效率約為88%。再利用該計算結果推估不同長度下的EAM所對應的光信號明滅比及插入損耗,本論文循此方式提供整體元件最佳化之結構與材料參數。
    實驗成果方面,本論文成功製作出分佈反饋式雷射與電致吸收調變器及其積體化之電致吸收調變雷射。就分佈反饋式雷射之特性而言,在元件長度800微米的分佈反饋式雷射之臨限電流約為78 mA左右,波長位置為1610 nm,旁模抑制比大於50 dB,最大光輸出功率可達到3 mW,接觸阻抗約在7.3 Ω。而就電致吸收調變器而言,在最佳工作點操作下( -2 V±1 V),具有最大的吸收光功率量,而最佳調變波段約為1.58~1.62 慆,光信號明滅比可達18 dB。
    Table of Contents 目錄
    中文摘要
    Abstract
    致謝
    目錄
    圖目錄
    表目錄
    第一章 導論
    1-1 前言
    1-2 電致吸收調變雷射
    1-3 研究方向
    1-4 論文架構
    第二章 元件製程理論與技術
    2-1 分佈反饋式雷射的原理與簡介
    2-2 電致吸收調變器的原理與簡介
    2-2-1 法蘭茲凱爾帝希效應
    2-2-2 量子侷限史塔克效應
    2-3 積體化元件製作技術簡介
    2-3-1 偏移量子井結構
    2-3-2 雙量子井結構
    2-3-3 對接再磊晶結構
    2-3-4 量子井混合技術
    2-3-5 選擇性區域磊晶
    2-4 電性隔離技術簡介
    第三章 元件模擬與設計
    3-1 模擬軟體簡介
    3-2 元件材料結構設計與模擬
    3-2-1雙量子井材料結構
    3-2-1 分佈反饋式雷射材料增益模擬
    3-2-2 電致吸收調變器材料吸收模擬
    3-3 元件幾何結構設計與模擬
    3-3-1 元件幾何結構與光場強度分佈
    3-3-2 光侷限因子及光耦合效率
    3-4 最佳化波導厚度
    3-4-1波導層(Waveguide Layer)厚度改變的效益
    3-4-2光侷限因子與耦合效率的模擬
    3-5 元件長度設計
    3-5-1 電致吸收調變器長度
    3-5-2 元件長度組合
    3-6 分佈反饋式雷射元件特性模擬
    第四章 元件製程步驟與結果
    4-1 光罩設計
    4-2 電致吸收調變雷射製程流程
    4-3 製程結果與討論
    第五章 元件量測
    5-1功率-電流-電壓特性量測
    5-2 光頻譜量測
    5-3電致吸收調變器吸收光電流量測
    5-4 電性隔離阻值量測
    5-5 積體化元件整體效能量測
    第六章 結論
    6-1 成果與討論
    6-2 未來研究方向
    參考文獻
    作者簡介
    References [1] J. W. Raring and L. A. Coldren, “40Gb/s Widely Tunable Transcievers,” IEEE Journal of Slected Topic in Quantum Electronics, vol. 13, no.1, January, (2007).
    [2] 楊淳良,趙亮琳,光纖通信網路,五南圖書出版公司,民國96年。
    [3] T. L. Koch and J. Bowers, “Nature of Wavelength Chirping in Directly Modulated Semiconductor Lasers,” IEEE Electronics Letters, vol. 20, pp. 1038-1040, (1984).
    [4] S. O. Kasap, Optoelectronics and Photonics Principles and Praticles, Pearson, Ch. 4, (1999).
    [5] D. Derickson, Fiber Optic Test and Measurement, Prentice-Hall, pp. 1-51(1998).
    [6] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY(1995).
    [7] G. L. Li, P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” Journal of Lightwave Technology, vol. 21, no. 9, pp. 2204-2206, (2003).
    [8] W. Kobayashi, K. Tsuzuki, Y. Shibata, T. Yamanaka, Y. Kondo, and Fumiyoshi Kano, “10-Gb/s, 80-km SMF Transmission From 0 to 80℃ by Using L-Band InGaAlAs-MQW Electroabsorption Modulated Laser With Twin Waveguide Structure,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 5084-5089(2009).
    [9] B. Stegmueller, E. Baur, M. Kicherer, ”15-GHz Modulation Performance of Integrated DFB Laser Diode EA Modulator With Identical Multiple Quantum Well Double-Stack Active Layer,” IEEE Photonics Technology Letters, vol. 14, pp. 1647-1649(2002).
    [10] P. Steinmann, B. Borchert, and B. Stegm‥uller, “Improved Behavior of Monolithically Integrated Laser/Modulator by Modified Identical Active Layer Structure,” IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1561-1563(1997).
    [11] W. Kobayashi, K. Tsuzuki, Y. Shibata, T. Yamanaka, Y. Kondo, and Fumiyoshi Kano, “10-Gb/s, 80-km SMF Transmission From 0 to 80℃ by Using L-Band InGaAlAs-MQW Electroabsorption Modulated Laser With Twin Waveguide Structure,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 5084-5089(2009).
    [12] B. Stegmueller, E. Baur, M. Kicherer, ”15-GHz Modulation Performance of Integrated DFB Laser Diode EA Modulator With Identical Multiple Quantum Well Double-Stack Active Layer,” IEEE Photonics Technology Letters, vol. 14, pp. 1647-1649(2002).
    [13] P. Steinmann, B. Borchert, and B. Stegm‥uller, “Improved Behavior of Monolithically Integrated Laser/Modulator by Modified Identical Active Layer Structure,” IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1561-1563(1997).
    [14] H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, H. Yasaka, “Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 5(2007).
    [15] Y. Miyazaki, T. Yamatoya, K. Matsumoto, K. Kuramoto, K. Shibata, T. Aoyagi, T. Ishikawa, “High-power ultralow-chirp 10-Gb/s electroabsorption modulator integrated laser with ultrashort photocarrier lifetime,” IEEE Journal of Quantum Electronics, vol. 42, no. 4(2006).
    [16] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, H. Wada, “ EAM-integrated DFB laser modules with more than 40-GHz bandwidth,” IEEE Photonics Technology Letters, vol. 13, pp. 954-956(2001).
    [17] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, H. Takeuchi, “Wide bandwidth of over 50GHz travellingwave electrode electroabsorption modulator integrated DFB lasers,” IEEE Electronics Letters, vol. 37, pp. 299-300(2001).
    [18] 潘彥廷, 設計製作半導體雷射的量子井混合技術,碩士論文,國立台灣科技大學,台北(2003) .
    [19] J. W. Raring, E. J. Skogen, L. A. Johansson, M. N. Sysak, S. P. DenBaars, and L. A. Coldren, “Widely Tunable Negative-Chirp SG-DBR Laser/EA-Modulated Transmitter,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 80-86(2005).
    [20] Y. Cheng, J. Pan, Y. Wang, F. Zhou, B. Wang, L. Zhao, H.Zhu, W. Wang, “40-Gb/s Low Chirp Electroabsorption Modulator Integrated With DFB Laser,” IEEE Photonics Technology Letters, vol. 21, pp. 356-358(2009).
    [21] J. S. Choe, Y. H. Kwon, J. S. Sim, S.B. Kim, “40 Gbps electroabsorption modulated DFB laser with tilted facet formed by dry etching,” Semiconductor Science and Technology, vol. 22, no. 7(2007).
    [22] Q. Zhao, J.Q. Pan, J. Zhang, B.X. Li, F. Zhou, B.J. Wang, L.F. Wang, J. Bian, L.J. Zhao and W. Wang, “Monolithic integration of electroabsorption modulator and DFB laser for 10-Gb/s transmission,” Optics Communications, vol. 260, pp. 666-669(2006).
    [23] L. Hou, H. Zhu, Q. Kan, Y. Ding, B. Wang, F. Zhou, W. Wang, “1.55-μm ridge DFB laser and electroabsorption Modulator integrated with buried-ridge-stripe dual-waveguide spot-size converter output,” IEEE Photonics Technology Letters, vol. 18, pp. 235-237(2006).
    [24] R.A.Salvatore, R.T.Sahara, M. A. Bock, I. Libenzon, ”Electroabsorption Modulated Laser for Long Transmission Spans,” IEEE Journal of Quantum Electronics, vol. 5, no. 5, pp. 464-476, (2002).
    [25] 杜長耕, 雙量子井結構之光積體化元件設計與製作,碩士論文,國立台灣科技大學,民國98年。
    [26] 吳奇璋, 分佈反饋式雷射與行波式電致吸收調變器積體化元件製作,碩士論文,國立台灣科技大學,民國98年。
    [27] 吳俊煌, 雙波長雷射與電致吸收調變器之積體化設計與製作,碩士論文,國立台灣科技大學,民國99年。
    [28] Q. Zhao, J.Q. Pan, J. Zhang, B.X. Li, F. Zhou, B.J. Wang, L.F. Wang, J. Bian, L.J. Zhao, W. Wang, “MQW electro-absorption modulator integrated DFB laser modules for high-speed transmission,” Semiconductor Science and Technology, vol. 21, pp. 734-739(2006).
    [29] M. Aoki, S. Takashima, Y. Fujiwara, and S. Aoki, “New Transmission Simulation of EA-Modulator Integrated DFB-Lasers Considering the Facet Reflection-Induced Chirp,” IEEE Photonics Technology Letters, vol. 9, no.3, pp.380-382(1997).
    [30] J. Kreissl, C. Bornholdt, T. Gaertner, L. Moerl, G. Przyrembel, and W. Rehbein,” Flip-Chip Compatible Electroabsorption Modulator for up to 40 Gb/s, Integrated with 1.55 μm DFB Laser and Spot-Size Expander”, IEEE J. Quantum Electron, vol. 47, no. 7, pp, July 2011.
    Advisory Committee
  • San-Liang Lee - Adviser
  • Pinghui-Sophia Yeh - Advisory Committee
  • Jing-Shown Wu - Advisory Committee
  • Cheng-Kuang Liu - Advisory Committee
  • Files
  • etd-0727112-110451.pdf
  • Indicate in-campus at 5 year and off-campus access at 99 year.
    Date of Submission 2012-07-30


    Browse | Search All Available ETDs

    If you have more questions or technical problems, please contact National Taiwan University of Science and Technology